
Cocoa Text
Session 306

Cocoa Text

Doug Davidson
Cocoa Frameworks Engineer

Introduction and Concepts
•Text system is at the heart of Cocoa
•Responsible for almost all visible text
•Handles everything from simple string display
to the five-minute text editor, and beyond

•Fully Unicode based
•Highly customizable

Concepts
•Characters + attributes = attributed string
•Attributes include fonts, paragraph attributes
•Glyphs are elements of fonts
•Containers describe geometry

a ´

á

Example:
•Character: Latin small letter a acute (á)
•Attributes: Helvetica 64, blue
•Glyphs:
•Displayed result:

Processes
•Attribute fixing—make sure attributes are OK
•Glyph generation—from characters to glyphs
•Layout—position glyphs in containers
•Display—send glyphs to Quartz for display

 All of these usually done lazily on demand

Text System Classes

NSTextStorageNSTextStorage NSLayoutManager NSTextViewNSTextViewNSTextContainer

With one

NSTextView,

all of the text

flows within a

single, typically

rectangle, area.

With one

NSTextView,

all of the text

flows within a

single, typically

rectangle, area.

Text System Classes
•Model—View—Controller
•Model classes model characters, attributes,
geometry

•Controller classes control glyph generation
and layout

•View classes handle user input and display

Model Classes
•NSTextStorage is NSMutableAttributedString
•NSFont, NSColor, NSParagraphStyle, NSTextTab
•NSTextAttachment models attached file
•NSTextContainer models geometry of layout

Controller Classes
•NSLayoutManager is the boss
•Workhorse class that manages all the rest
•Controls glyph generation and layout
•Performs actual display of glyphs
•Source for information about glyphs and layout
•Calls on NSTypesetter to perform layout

View Classes
•NSTextView handles display and input
for a single NSTextContainer region

•NSText is vestigial abstract superclass
•Multiple NSTextViews work together
•Ruler classes handle text rulers
•NSTextAttachmentCell draws attachment

Class Relationships

NSTextStorageNSTextStorage NSLayoutManager NSTextViewNSTextViewNSTextContainer

With one

NSTextView,

all of the text

flows within a

single, typically

rectangle, area.

With one

NSTextView,

all of the text

flows within a

single, typically

rectangle, area.

Class Relationships
•One text storage may have multiple layout
managers, corresponding to different layouts

•One layout manager may have a list of text
containers, into which the text flows

•A text container has at most one text view
•Usually storage owns layout owns container
owns view, but there is a simplified option

Class Relationships

NSTextStorageNSTextStorage NSLayoutManager

NSTextViewNSTextView

NSTextContainer

NSTextContainer

(and associated

NSTextView) is

Added, and the

Text flows onto

the second page.

NSTextContainer

(and associated

NSTextView) is

Added, and the

Text flows onto

the second page.

NSTextContainer

NSTextViewNSTextView

As text is added, it

fills the region

defined by the first

NSTextContainer.

The text is

displayed in the

NSTextView that is

paired with the

NSTextContainer.

When there’s no

more room, another

As text is added, it

fills the region

defined by the first

NSTextContainer.

The text is

displayed in the

NSTextView that is

paired with the

NSTextContainer.

When there’s no

more room, another

Class Relationships

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

NSTextViewNSTextView

NSTextStorageNSTextStorage

NSTextContainer

NSTextContainer

NSTextViewNSTextViewNSLayoutManager

NSLayoutManager

Simple Text System Usages
•String drawing for string or attributed string
•Cell drawing used by controls
•For editing, control uses a shared layout
manager and text view, the “field editor”

•Can use layout manager without text view
to measure and/or draw text

Simple Text View Usages
•Simplest and most common case is one text
view, one text container, one layout

•Rule of thumb: Use notification/delegation
before subclassing

•Text view’s delegate has extensive control
over handling of user input

Text View Delegate

Demo

Beyond the Single Text View
•Multiple text containers: Multiple pages,
multiple columns, arbitrary regions

•Text container subclass can describe more
or less arbitrary geometry

•Layout manager has ordered list of containers
into which it lays text

•One text view per container, with shared state

Multiple Text Containers

NSTextStorageNSTextStorage NSLayoutManager

NSTextViewNSTextView

NSTextContainer

NSTextContainer

(and associated

NSTextView) is

Added, and the

Text flows onto

the second page.

NSTextContainer

(and associated

NSTextView) is

Added, and the

Text flows onto

the second page.

NSTextContainer

NSTextViewNSTextView

As text is added, it

fills the region

defined by the first

NSTextContainer.

The text is

displayed in the

NSTextView that is

paired with the

NSTextContainer.

When there’s no

more room, another

As text is added, it

fills the region

defined by the first

NSTextContainer.

The text is

displayed in the

NSTextView that is

paired with the

NSTextContainer.

When there’s no

more room, another

Multiple Layouts
•A single text storage may have multiple layout
managers, for multiple views of the same text

•For example, a slide presentation app might
display text in a single container (outline), and
simultaneously in multiple containers (slides)

•Changes made in one take effect in text storage,
which notifies all layout managers, which
invalidate appropriate ranges

Multiple Layouts (Cont.)
•Layout manager also sets needs display
for appropriate regions of views

•When views are redisplayed, they ask for
glyph information and glyph drawing

•This lazily causes attribute fixing, glyph
generation, and layout as needed

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

Multiple

NSLayoutManagers

allow you to have

multiple presentations

of the same text. The

text within each view

can have separate

layout and sections.

NSTextViewNSTextView

Multiple Layouts

NSTextStorageNSTextStorage

NSTextContainer

NSTextContainer

NSTextViewNSTextViewNSLayoutManager

NSLayoutManager

Text Options
•Container may resize to match view, or view
to match container, in horizontal or vertical

•Text views often in scroll view, which may
scroll horizontally or vertically

•Container can be inset within text view, and
text can be inset within text container

Text Options (Cont.)
•Text view has options to control selectability,
editability, rich text, attachments, rulers, font
panel, spellchecking, smart cut/paste, selected
attributes, field editor behavior

•Layout manager has options to control
background layout, hyphenation, attachment
scaling, use of screen fonts

Assembling the Pieces
•Create text storage with text
•Create layout manager(s) and add to text storage
•Create text containers and add to layout manager
•Create text views, if desired, and set for text
containers

•Size and pad containers, inset them in views, and
position views in superview

Demo
Text Options

Dealing With the Text
•NSTextStorage stores the text, as a mutable
attributed string subclass

•Use mutable attributed string methods to alter it
•Special feature of text storage is that it notifies
layout managers of changes

•For efficiency, wrap sequences of changes in
beginEditing/endEditing to coalesce

Text Attributes
•Recognized attributes are listed in AppKit’s
NSAttributedString.h header

•Font, colors, underlines, sub/superscript,
ligatures, kerning, baseline offset, paragraph style

•Bold, italic, etc. are traits of the font, managed by
NSFontManager

•Margins, tabs, spacing are part of paragraph style
•New: Right, center, decimal tabs

Special Attributes
•Attachments consist of attachment character
with attachment attribute

• Attribute value is NSTextAttachment,
which points to an NSFileWrapper

• Attachment cell will automatically be
created, or you can use your own

•Link attribute can point to URL or other
object of your choice

Attribute Fixing
•Attribute fixing performed lazily on demand
by text storage

• Font fixing substitutes fonts to make
sure characters can be displayed

• Paragraph fixing makes sure whole
paragraph has the same paragraph style

• Attachment fixing makes sure attachment
attributes go with attachment characters

Getting Text In and Out
•Native format is RTF, or RTFD with attachments
•For pasteboard we provide these, plus plain text
•Methods for reading and writing RTF and RTFD
•Methods for reading from a file, which may be
plain text, RTF, RTFD, HTML, SimpleText, etc.

•Filter services allow third-party extensions

Services
•Standard services allow processing of text
•Text provided and returned on pasteboard
•Filter services for images and text
•Spellcheckers are also a form of service

• All-new spellcheckers for Jaguar

Archiving
•New keyed archiving supports archiving of
most classes in the text system

•NSTextView, NSLayoutManager,
NSTextContainer, and NSTextStorage archive

•Archiving preserves all attributes in text storage
• Custom attributes should be archivable

Dealing With Layout
•NSLayoutManager answers your questions
about glyphs and layout

•Glyph generation and layout performed lazily
on demand

•Layout manager observes changes to text
storage and invalidates as necessary

• You can also invalidate manually

Characters and Glyphs
•Layout manager maps glyph ranges to
character ranges

•Layout manager stores sequence of glyphs
• Control glyph used for tabs, line breaks, etc.
• Null glyph sometimes used for padding

•Layout manager stores glyph attributes
• elastic, inscription

Layout Information
•Layout manager contacts typesetter, which
performs layout

•Typesetter may insert or change glyphs, or
make glyphs not shown

•Typesetter contacts text container for geometry
•Typesetter informs layout manager which
container a glyph goes in, which line fragment,
and where in the fragment

Ask the Layout Manager
•Position, size, and glyph range for line fragment
(position in text container coordinates)

•Glyph range for text container
•Text container, line fragment, and position in
fragment for glyph

•Glyph for coordinates, bounding rect for glyph
range, rect array for glyph range

Drawing Glyphs
•Layout manager actually sends the glyphs
to be drawn, and draws backgrounds and
underlines (using Quartz)

•You can request drawing yourself
•Must have locked focus in appropriate view
•Positions are relative to text container

Demo
Layout Manager

Subclassing Text Objects
•First, check to see if you can use existing options

• Example: Selected text attributes
• Example: Temporary attributes

•Next, try notification, delegation, categories
• Example: Command by selector

•Override minimal methods to do what you want

Subclassing NSTextStorage
•Subclass to provide your own storage
mechanism

•Subclass to do your own attribute fixing
•Subclass to obtain additional notifications

Subclassing NSTextContainer
•Subclass to provide custom geometry
•Your custom container will be passed in a
proposed line rectangle

•Return an adjusted rectangle, plus an additional
rectangle for possible further fragments within
the same line

Subclassing NSTextView
•Subclass to alter user interaction
•Subclass to alter drawing behavior at the
view level

•Subclass to alter context menus, cut and
paste, drag and drop, etc.

Subclassing NSLayoutManager
•Subclass to provide custom drawing behavior

• Background, glyphs, underlines
•Subclass to store additional glyph attributes
•Subclass to override hit testing, selection
rectangles, etc.

NSTextAttachmentCell
•Standard text attachment models attached file,
with standard cell to provide inline image

•Subclass text attachment cell to do arbitrary
custom drawing

•Subclass to handle mouse clicks within the cell

Subclassing NSTypesetter
•Most difficult class to subclass
•Hooks after layout of glyph, line
•Subclass to alter layout at the level of
individual glyphs in a line fragment

Demo
Subclassing

Where to Go From Here
•/Developer/Examples/AppKit

• TextEdit
• TextSizingExample
• CircleView

• http://developer.apple.com
Documentation> Mac OS X
 > Cocoa >Text Handling

Cocoa Documentation
•Object-Oriented Programming and the
Objective-C Language

•Programming Topics
Application Architecture Memory Management
Foundation Framework Multithreading
Loading Resources Notifications

…and many more!

Documentation > Cocoa
developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

For More Information
•O’Reilly “Learning Cocoa” and “Building Cocoa
Applications: A Step-by-Step Guide”

•Cocoa Developer Documentation
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

•Apple Customer Training
 http://train.apple.com/

Roadmap
Room A1

Mon., 5:00pm
Room A1

Mon., 5:00pm

300 Introduction to Cocoa:

What’s Cocoa?

Civic
Tues., 9:00am

Civic
Tues., 9:00am

301 Cocoa: What’s New:
New features and API since 10.1

Hall 2
Thurs., 9:00am

Hall 2
Thurs., 9:00am

302 Cocoa API Techniques:

Understanding, leveraging, and extending

Hall 2
Fri., 10:30am

Hall 2
Fri., 10:30am

305 Cocoa Drawing:

Drawing using Cocoa APIs

Room A1
Fri., 5:00pm
Room A1

Fri., 5:00pm

FF016 Cocoa:
Comments and suggestions for Cocoa

Who to Contact

Cocoa Feedback
cocoa-feedback@group.apple.com

Cocoa Development Mailing List

Subscribe at
www.lists.apple.com/mailman/listinfo/cocoa-dev

Heather Hickman
Cocoa Technology Manager
hhickman@@apple.com

http://developer.apple.com/wwdc2002/urls.html

Q&A

http://developer.apple.com/wwdc2002/urls.html

Heather Hickman
Cocoa Evangelist

hhickman@apple.com

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

